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Abstract

Within the National Weather Service River Forecast System, water supply forecast-
ing is performed through Ensemble Streamflow Prediction (ESP). ESP relies both on
the estimation of initial conditions and historically resampled forcing data to produce
seasonal volumetric forecasts. In the western US, the accuracy of initial condition esti-5

mation is particularly important due to the large quantities of water stored in mountain
snowpack. In order to improve the estimation of snow quantities, this study explores the
use of ensemble data assimilation. Rather than relying entirely on the model to create
single deterministic initial snow water storage, as currently implemented in operational
forecasting, this study incorporates SNOTEL data along with model predictions to cre-10

ate an ensemble based probabilistic estimation of snow water storage. This creates a
framework to account for initial condition uncertainty in addition to forcing uncertainty.
The results presented in this study suggest that data assimilation has the potential to
improve ESP for probabilistic volumetric forecasts but is limited by the available obser-
vations.15

1 Introduction

Accurate prediction of seasonal streamflow information is essential to effectively man-
aging surface water supply. For this reason, recent studies have examined techniques
that have potential to provide skillful predictions of seasonal runoff volume (Clark and
Hay, 2004; Kennedy et al., 2009; Moradkhani and Meier, 2010; Regonda et al., 2006;20

Thirel et al., 2008). It has been well documented that the seasonal volume of runoff is
controlled by both the initial water storage of the land surface at the beginning of the
season and the future water fluxes into and out of the system (Lorenz, 1975). The effect
of the initial water storage is particularly important in mountainous regions where melt
from seasonal snowpack can dominate the spring and summer streamflows (Pagano25

et al., 2004). Given that there is accurate quantification of the snow water storage in a
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specified region, this information can be utilized to improve the accuracy of seasonal
streamflow prediction. This idea is implemented in the National Weather Service River
Forecast System (NWSRFS) through Ensemble Streamflow Prediction (ESP).

The ESP framework was first introduced by Twedt et al. (1977) and later clarified by
Day (1985). In ESP, the initial condition of the water stored in the snowpack and soil5

are produced by running hydrologic models up to the initial forecast time-step. This
provides information to initialize the model for seasonal forecasting with an ensemble
of historical forcing data. Since the approach for generating the initial condition does
not account for uncertainties in the modeling framework, and the sampled forcing data
is not necessarily representative of the future climate, it is advantageous to both con-10

strain the forcing data and account for the errors associated with the initial conditions.
Previous work has focused both on constraining the forcing to more realistic predic-
tions (Najafi et al., 2011; Werner et al., 2004) and examining the uncertainties in the
initial conditions (Wood and Lettenmaier, 2008; Li et al., 2009). While both sources of
uncertainty are important to address, this study focuses on using data assimilation to15

more accurately quantify the uncertainty with respect to snow.
Modeling of snow accumulation and ablation is subject to a range of uncertainties.

These uncertainties stem from errors in observing the forcing data, model structure and
parameterization. In addition to modeling errors, observing the initial condition of the
snowpack is complicated because of the spatially heterogeneous and complex nature20

of snowpack. In order to improve estimation of snowpack states, several recent studies
have examined combining the modeled and observed states through data assimilation
to improve the snow estimates and quantify their uncertainty (Andreadis and Letten-
maier, 2006; Clark et al., 2006; DeChant and Moradkhani, 2011a; Durand et al., 2009;
Leisenring and Moradkhani, 2010; Rodell and Houser, 2004; Slater and Cark, 2006;25

Sun et al., 2004; Zaitchik and Rodell, 2009). These studies have showed that there is
potential for using snow data assimilation to improve snow estimates through a variety
of observations including in-situ (SNOTEL) and remotely sensed (snow cover, snow
water equivalent and passive microwave brightness temperature) measurements. For
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the purposes of this study, SNOTEL observations are utilized for their simplicity and
reliability. While remotely sensed data have the potential to be more effective in quanti-
fying spatial quantity of snow, the use of these observations for data assimilation is still
in the development phase and therefore not fit for this study.

This study is organized into 4 subsequent sections. The methods section discusses5

the SNOW-17 and Sacramento Soil Moisture Accounting (SAC-SMA) models, the
study area and the SNOTEL observation data. The third section describes the ex-
perimental design, including a description of data assimilation, ESP, with and without
data assimilation, and the performance metrics with which the results are verified. This
is followed by a results section and the final section contains a brief discussion and10

conclusion.

2 Methods

2.1 SNOW-17

The SNOW-17 model is used operationally at the NWSRFS and is the snow model
used in operational ESP forecasts. SNOW-17 is a temperature index model that mod-15

els the simplified vertical snow processes (Anderson, 1973). The main processes
simulated by SNOW-17 include: form of precipitation (snow or rain), accumulation of
snow cover, energy exchange at the snow-air interface, internal states of snow cover
(temperature, liquid/frozen water content, density, etc.), transmission of liquid water
through the snowpack, and heat transfer at the soil-air interface. With six-hourly inputs20

of precipitation and air temperature, the model predicts the amount of snow accumu-
lation and melt that occur. In order to account for spatial and elevation heterogeneities
of snow, the model is run for two or three separate elevation bands for each sub-basin.
Historical forcing data and model parameters for each basin elevation band were pro-
vided by the Colorado River Basin River Forecast Center (CBRFC).25

7210

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/7207/2011/hessd-8-7207-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/7207/2011/hessd-8-7207-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 7207–7235, 2011

Improving the
characterization of

initial condition

C. M. DeChant and
H. Moradkhani

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2.2 Sacramento soil moisture accounting model

The SAC-SMA model, first introduced by Burnash (1973), is the model used opera-
tionally at the NWSRFS to translate snowmelt and rain values into streamflow. The
model simulates water storage with two soil moisture zones: an upper and a lower
zone. The upper zone accounts for short term storage of water in the soil, while the5

lower zone models the longer term groundwater storage. Water can move vertically
from the upper zone to the lower zone, laterally out of the system depending on the
state variables and the parameterization, or vertically out of the system through evapo-
transpiration. The SAC-SMA is run with information from the SNOW-17 model and the
potential evapotranspiration (PET), is linearly interpolated from the monthly PET val-10

ues for each elevation band provided by the CBRFC for the study basins. The model
calculates the water balance for the system and any excess is routed to the basin outlet
using the unit hydrograph method.

2.3 Study area

This study takes place in the Upper Colorado River basin. Fifteen separate sub-basins15

were analyzed to determine an average effect the data assimilation has on ESP. These
fifteen basins are summarized in Table 1. The locations of the basins within the Upper
Colorado River Basin are shown in Fig. 1.

2.4 SNOTEL

SNOTEL sites are managed by the National Resources Conservation Service (NRCS)20

and provide in-situ observations of snow depth, snow water equivalent (SWE), pre-
cipitation, and temperature. Some enhanced sensors can measure more variables,
such as soil moisture. The quantity of interest for this study is SWE. At SNOTEL
sites, SWE is measured by a snow pillow. A snow pillow is a pressure sensitive
pad that weighs the snowpack, which can be directly translated into the volume of25
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water that would be released if the snowpack was melted. In addition, the snow
depth is measured with a sonic sensor, the precipitation is measured with a stor-
age type gage and air temperature is measured with a shielded thermistor (NRCS,
http://www.wcc.nrcs.usda.gov/snotel/SNOTEL-brochure.pdf). Each SNOTEL site is
chosen as the observation of a given model elevation band based on horizontal (lat-5

itude and longitude) and vertical (elevation) proximity. In order to show the repre-
sentativeness of SNOTEL stations in relation to the model elevation bands, Fig. 2 is
presented. This figure shows that the middle elevation band is well represented in
terms of elevation. Similar elevations between the model band and the SNOTEL ob-
servation are necessary for an accurate update because the timing of peak snowpack10

accumulation change dramatically with elevation. As will be described in the results,
the elevation of the band also controls the timing of snowmelt, which strongly affects
the modeling results.

3 Experimental design

3.1 Data assimilation using the particle filter15

The term data assimilation refers to a variety of techniques aimed at combining model
simulation and an observation to account for uncertainties in both state reconstruc-
tion techniques. In this study, ensemble based techniques are employed because they
directly address the prediction of uncertainty in the desired state. Of the available en-
semble data assimilation techniques, the Ensemble Kalman Filter (EnKF) is the most20

popular in the hydrologic literature. Several studies in the past decade have applied
this technique to hydrologic models in the past decade (Andreadis and Lettenmaier,
2006; Clark et al., 2006; Durand et al., 2009; Moradkhani et al,. 2005a; Reichle et
al., 2002; Roddell and Houser, 2004; Slater and Cark 2006; Sun et al., 2004; Zaitchik
and Rodell, 2009). Though these studies have shown that the EnKF is a valuable tool25

for data assimilation in many applications, this study focuses on the use of the Particle
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Filter (PF). According to recent studies, the PF is an effective hydrologic and hydraulics
data assimilation method, providing predictive uncertainty in model states, parameters
and fluxes (DeChant and Moradkhani 2011a, b; Matgen et al., 2010; Leisenring and
Moradkhani, 2010; Moradkhani et al., 2005b; Rings et al., 2010; Weerts and Serafy,
2006). The PF is not subject to the limitations experienced in the EnKF including the5

Gaussian assumption of joint distribution of observation and model states, the linear
updating of model states and also not preserving the dynamical balance in the analysis
(i.e., the conservation of mass) (Moradkhani et al., 2005b; Moradkhani, 2008), there-
fore, for these reasons, the PF is used to assimilate the snow observations into the
hydrologic models.10

In order to explain data assimilation, the modeling framework must be viewed in
the state-space framework. At the initial timestep, the model is supplied with an initial
distribution of states and parameters. As the model progresses forward in time, the
prior distribution of states is produced according to Eq. (1).

x−
i ,t = f

(
x+
i ,t,u

i
t

)
+ωi

t (1)15

where f is the forward operator (hydrologic model), x−
i ,t represents the model predicted

(prior) states, x+
i ,t represents the updated model states at the previous time-step, ui

t

represents the meteorological forcing data, ωi
t is the model error, i is the ensemble

member and t is the time-step. Prior to update of the model states and parameters,
an observational operator must be applied to transfer the states into the observation20

space, as in Eq. (2).

y ′
i ,t =h

(
x−
i ,t

)
+νi ,t (2)

where y ′
i ,t is the prediction and νi ,t is the observation error. In this experiment, the

observational operator takes the form of normalizing the SWE predictions. This results
in a percent of maximum annual SWE.25
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Based on the recursive Bayes Law (3), the PF sequentially samples prior states and
parameters to create an accurate posterior distribution, at each observation time-step.

p
(
xt |Yt

)
=p
(
xt |yt,Yt−1

)
=

p
(
yt |xt

)
p
(
xt |Yt−1

)∫
p
(
yt |xt

)
p
(
xt |Yt−1

)
dx

(3)

Equation (3) shows mathematically that a posterior conditional probability distribution
of model predicted states and parameters (xt), given all previous observations (Yt), can5

be computed sequentially in time. It should be noted that all in Eq. (3) are observations
as is signified in other equations by y . In this study, the probability of each particle is
calculated via the normal likelihood Eq. (4).

L
(
yt |xi ,t+1

)
=

1
√

2π
√
|Rk+1|

exp
(
− 1

2Rk+1

[
yt−y ′

i ,t

]2
)

(4)

The normalized likelihood, p
(
yt |xi ,t+1

)
, can easily be calculated by:10

p
(
yt |xi ,t+1

)
=

L
(
yt |xi ,t+1

)
Np∑
i=1

L
(
yt |xi ,t+1

) =p
(
yt−y ′

i ,t |Rk+1

)
(5)

This probability is necessary to transform the prior particle weights into the posterior
via Eq. (6).

w+
i ,t =

w−
i ,t×p

(
yt |xi ,t+1

)
Np∑
i=1

w−
i ,t×p

(
yt |xi ,t+1

) (6)

In the PF with resampling, prior particle weights, w−
i ,t, equal to 1/

Np
before moving on15

to the next time-step. This results in a posterior weight, w+
i ,t, equal to p

(
yt |xi ,t+1

)
which
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is the normalized likelihood. In this study we rely on Sequential Importance Resampling
(SIR) method as elaborated in Moradkhani et al. (2005b) and Moradkhani (2008). In
the data assimilation portion of this study, 500 ensemble members, or “particles”, are
used for snow estimation.

3.2 Ensemble Streamflow Prediction (ESP) with and without data assimilation5

ESP is a method used by the NWSRFS to create probabilistic forecasts of seasonal
streamflow volumes. This provides a prediction of the uncertainty in seasonal stream-
flow resulting from unknown forcing data and initial model states at the time of fore-
cast, as shown in Fig. 3. Initial model states are produced by running the model with
observed input data up to the initial forecast time-step. This is called a “spin-up”. Start-10

ing at this point, the model is forced with resampled historical forcing, beginning at
the initial forecast date, for each historical observation year. This produces a poten-
tial streamflow trace that could occur given the current state of the land surface and a
previously observed forcing dataset. Given that the assumptions of seasonal forcing
stationarity and accurate model initial states are not violated, ESP can provide a skillful15

probabilistic prediction of seasonal streamflow.
ESP can be coupled with data assimilation for state initialization, also shown in Fig. 3.

Rather than beginning the ESP forecast with a spin-up, as is done in traditional ESP,
ESP-DA begins with a sequential state estimation experiment. This creates an en-
semble of state values that represent a probability density (Fig. 3b). After a sufficient20

number of time-steps, and assuming the uncertainty with respect to the model and
observation are accurately quantified, the state distribution produced by data assimi-
lation will accurately reflect the uncertainty in the state with respect to the model and
observation. At this point, a given number of ensemble members are sampled from the
state distribution, 50 this study, and the ESP is performed from each of these ensem-25

ble members (shown in Fig. 3b with 8 sampled ensemble members for visibility). This
propagates the uncertainty from the initial condition through the ensemble forecast,

7215

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/7207/2011/hessd-8-7207-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/7207/2011/hessd-8-7207-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 7207–7235, 2011

Improving the
characterization of

initial condition

C. M. DeChant and
H. Moradkhani

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

which is hypothesized to create a more accurate estimation of uncertainty in stream-
flow prediction, as is represented in the forecast PDF in Fig. 3b.

3.3 Performance metrics

Ranked Probability Score (RPS) is a widely used measure for evaluating the qual-
ity of probabilistic predictions Wilks (1995). By definition RPS is the sum of squared5

error of the cumulative probability forecasts averaged over multiple events. In stream-
flow prediction, the probability forecast is usually expressed using a non-exceedance
probability forecast within pre-specified categories (i.e., 1, 25 %, 50 %, 75 % and 99 %
non-exceedance). The observed value for a given threshold (forecast category) takes
on the value of 1 if the observed flow value is less than the threshold for that category.10

Otherwise, the observed value is 0. The discrete expression of RPS is given as:

RPSt =
∑I

i=1

[
F t
i −Ot

i

]2
(7)

Where F t
i is the forecast probability at time t given by P (forecasti <threshi ) and Ot

i
is the observed probability given by P (observed<threshi ) where i is the probability
category. The Rank Probability Skill Score (RPSS) is also computed as the percentage15

improvement over a reference score (e.g., climatology) Wilks (1995):

RPSS=

(
1− RPS

RPSref

)
×100=

(
1− RPS

RPSclimatology

)
×100 (8)

Where RPSclimatology is the rank probability score for the observation. A positive value
shows to the percentage of improvement over the reference RPS.

In the analysis of total streamflow volume, a rank histogram and Q-Q plot are used20

to analyze the accuracy of the uncertainty prediction. In the Rank Histogram, the rank
in which the observation falls on each ensemble prediction is presented. The rank is
calculated according to the following equation.

Rankt = I
(
y ′
t,i <yt and y ′

t,i+1 >yt
)

(9)
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Where y ′ is the prediction and y is the observation, similar to the PF explanation.
All ranks are then placed into a histogram. Since the ensemble volume is assumed
to make up a probability density, a uniform histogram, in which the observation falls
equally as often in each rank, indicates accurate representation of uncertainty. For a
detailed description of Rank Histogram interpretation, see Hamill (2001).5

Similar to the rank histogram, a Q-Q plot provides information about the accuracy
of the uncertainty estimation of the ensemble forecast. A Q-Q plot is created by first
calculating the normalized rank (z) of each observation

zt =
I
(
y ′
t,i <yt and y ′

t,i+1 >yt
)

N
(10)

The ranks are then sorted and graphed. This graph is compared with a uniform line.10

A QQ plot matching the uniform line indicates optimal ensemble prediction. For details
of the interpretation of a QQ plot, see Laio and Tamea (2007). Since the proximity to
the uniform plot indicates the accuracy of the ensemble prediction, a score determining
the similarity to uniform can be calculated, which is here referred to as the Quantile-
Quantile Score (QQscore) as represented by Eq. (12).15

QQscore=1−2
∑T

t=1
|zt−Ut | (11)

In Eq. (12), T is the number of different seasonal forecasts and U is the normalized
uniform cumulative density. With a QQscore, a value of 1 is exactly uniform and a
value of 0 is the furthest possible from uniform.

4 Results20

Prior to analyzing the streamflow prediction results in this study, it is necessary to
compare the initial conditions created by the spin-up and data assimilation. This com-
parison is made in Fig. 4. In this figure, the initial states for the forecasts beginning on
1 March, 1 April, 1 May and 1 June for 2003 through 2005 are presented. Each sub-plot
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contains the total water stored (TWS) as snow (sum of all 15 basins) for the spin-up,
shown as a single value, and the data assimilation, shown as a distribution of values.
The distribution of snow states created by data assimilation represents the uncertainty
of the snow storage with respect to the model prediction and SNOTEL observations.
From Fig. 4, it is observed that the spin-up and data assimilation display very different5

behavior through the three years. During 2003, the median TWS from data assimi-
lation is near that of the model spin-up but for the following two years there is a low
bias for the data assimilation states. There are two factors creating this bias: the poor
characterization of snowpack in the upper/lower elevation bands by SNOTEL and the
difference in yearly accumulation totals between the model and SNOTEL.10

Poor representation of the upper and lower elevation bands by SNOTEL has impor-
tant consequences on the accuracy of data assimilation. Since the observation is most
representative of the middle elevation band, the lowest elevation bands will be forced
to peak later in the model than in reality, and the highest elevations will be forced to
peak earlier in the model than in reality. Overall this causes a trend of miscalculation15

of SWE in the winter months, when the majority of the flow would be from the lower
elevation band, and late spring months, when most of the melt would results from high
elevation melt. Because of the errors early and late in the snow accumulation/ablation
season, the ESP-DA results are only expected to improve seasonal forecasts beginning
on 1 March, 1 April and 1 May.20

In addition to errors relating to the elevation of the observations, the model and ob-
servations differ on the quantity of snow accumulation for each year. Figure 4 suggests
that the model tends to produce similar snow quantities in each year while the SNO-
TEL station has its greatest accumulation in 2003. This leads to a similar prediction
of snow quantities in 2003 but a strongly low bias in the following two years. Though25

elevation differences between the model and SNOTEL are expected to cause errors
in the streamflow prediction, yearly differences are expected to improve the seasonal
prediction. With an understanding of the effects that data assimilation has on model
states during this time, the ensemble streamflow forecasts can be effectively analyzed.
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Three month forecasts beginning in March and April are presented in Fig. 5 and
beginning in May and June are presented in Fig. 6. These figures show the cumula-
tive runoff for each day in the forecast period. Beginning in March, there is very little
cumulative runoff through the first month. This is because the snow accumulation will
continue through most of March on a typical year. In April, an increasing amount of flow5

is observed but it is not until May when the most rapid increase is observed. During
May, most of the area within the 15 basins is experiencing significant snowmelt. These
high flows do not taper off until late June. By late June, most of the snowpack has
melted and only the highest elevations will have snow to melt. For most forecast dates,
the uncertainty added through the initial states by data assimilation would be expected10

to increase the uncertainty in volumetric runoff. Rather than increasing the uncertainty,
these figures suggest that the uncertainty is constrained by ESP-DA in comparison to
ESP, through most forecasts. This is due to a generally low bias in the states. Since
there is a lower boundary condition for the flow (baseflow), and no upper boundary
condition, the low bias in the snow states has caused most of the ESP-DA forecasts15

to have less uncertainty in runoff volume than traditional ESP. During the 1 May and
1 June seasonal predictions for 2003, a larger uncertainty in initial conditions, with only
a slight bias, is found to increase the seasonal volumetric prediction uncertainty. With
respect to the 1 June prediction, it is important to note that, though the upper 95 %
predictive bound of the ESP-DA is lower than that of the traditional ESP, the maximum20

value of the ESP-DA is actually greater than that of the traditional ESP. This is shown
by Fig. 7. Overall for the forecasts beginning on 1 March, 1 April and 1 May, the biased
predictions from ESP-DA, comparing to traditional ESP, appear to have more accu-
rately bounded the observation. This is shown to improve the probabilistic prediction
with an average improvement in RPSS of 7.5 in 2004 and 11.5 in 2005. Though an25

improvement was found in forecasts beginning March through May during 2004 and
2005, during other months ESP-DA performs worse than ESP. This result is consistent
with the hypothesis that SNOTEL can only accurately constrain model snow predic-
tion during the late winter and early spring months. As was discussed previously, the
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lack of representative observations of the lower and upper elevation bands have led to
poor snow estimation in the early and late ablation season. Since forecasts begging in
March, April and May are dominated by middle elevation band snowmelt, improved ac-
curacy in middle elevation band snow has translated to more accurate flow predictions
during these months. Though this analysis provides useful information about potential5

improvements that ESP-DA can have over ESP on a day by day forecast, it is arguably
more important to look at the total seasonal volume, as this will likely be more useful
information to reservoir management and water resources planning.

An analysis of the seasonal volume runoff prediction starting in March, April, May
and June is provided in Fig. 7. This figure shows that the observed seasonal volume10

of flow from the 15 basins for all four seasonal forecasts starting between March and
June falls within the ensemble prediction of both the ESP and ESP-DA. Though the
total observed volume is within the predictive distribution from each method, the June
prediction from ESP-DA has a clear low bias that is not observed in the other three
months. This is a result of the poor assimilation of upper elevation snow, which is the15

main source of runoff over the summer months. In general, Fig. 7 suggests that, in
terms of total volume, the ESP and ESP-DA perform with similar accuracy for seasonal
predictions beginning in March, April and May. Though the total volume from all 15
study basins during the March, April and May seasonal predictions do not provide much
evidence of an improvement in forecasting with ESP-DA, examining the volumetric flow20

predictions for each separate basin suggests different behavior.
In this study, seasonal runoff volume prediction from each of the 15 basins, starting

in March, April and May for 2003 through 2005, was created. In total this analysis
includes 135 ensemble predictions of seasonal streamflow volume. In order to display
this quantity of results in a meaningful way, the results are summarized into a rank his-25

togram, Fig. 8, and Q-Q plot, Fig. 9. From the rank histogram in Fig. 8, it appears that
traditional ESP had a strong high bias in comparison to the observation. This high bias
led to many occurrences of the observed seasonal streamflow falling below the en-
semble prediction of the ESP. This is quite problematic when looking at seasonal water

7220

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/7207/2011/hessd-8-7207-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/7207/2011/hessd-8-7207-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 7207–7235, 2011

Improving the
characterization of

initial condition

C. M. DeChant and
H. Moradkhani

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

supply forecasting because it suggests a greater supply than is available, which in an
operational forecast would likely lead to poor supply management. ESP-DA produced
a much more uniform rank histogram, indicating a more accurate characterization of
uncertainty. In examining the Q-Q plot, a similar result is observed. While the ESP
has a strong tendency to over-predict the seasonal volume, the ESP-DA appears to5

produce a slightly overconfident prediction with a slight low bias. In addition, the higher
QQscore for ESP-DA in relation to ESP indicates a closer to uniform Q-Q plot. Over-
all the results suggest that seasonal predictions beginning in March, April and May
in the upper Colorado River Basin more accurately characterize the uncertainty when
initialized by data assimilation than with a model spin-up.10

5 Discussion and conclusion

This study examined the utility of incorporating data assimilation techniques to improve
state initialization in the ESP framework. A combined ESP-DA framework was im-
plemented in 15 sub-basins in the upper Colorado River Basin. This was compared
against traditional ESP to determine if an improved representation of uncertainty could15

be achieved through data assimilation. Though positive results were found for ESP-DA,
issues were found relating to the snow data assimilation.

In general, the flaws in this study stem from the lack of a representative observation
for all basins. Since the SNOTEL stations tend to be in the range of middle elevation
bands, the upper and lower elevation bands are known to be inaccurately adjusted.20

There is potential to improve the snow data assimilation in this study, but rigorous
study is still needed in the field of snow data assimilation to achieve this. Though the
assimilation process is known to be flawed, some positive results can still be observed
from this study. In the late spring and early summer, when the runoff is dominated
by the middle elevation bands, the results presented here suggest that ESP can ef-25

fectively be initialized through SNOTEL data assimilation. Furthermore, initialization
through data assimilation can improve the ability to estimate seasonal runoff volume
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uncertainty. With this result, it can be inferred that as the understanding of snow data
assimilation improves, ESP-DA will become more effective for seasonal streamflow
prediction. This highlights the potential for accurate seasonal forecasts in mountainous
regions but emphasizes the need for improved snow estimation techniques to achieve
a more accurate forecast.5

Overall this study found that ESP-DA has potential to improve characterization of un-
certainty over ESP in snowmelt dominated basins. As expected, improvements were
found during the period that achieved accurate state initialization. The results pre-
sented here show the importance of both accurate state initialization and accurate
estimation of the uncertainty of the initial states. By more accurately characterizing the10

uncertainty in the states, the total seasonal flow uncertainty is more accurately repre-
sented. In future studies, the ESP-DA techniques should be tested with new methods
for assimilating snow information. ESP-DA can also be easily coupled with advanced
techniques to constrain the forcing uncertainty. Therefore state initialization of ESP us-
ing data assimilation should be considered a potential tool for improving ESP forecasts15

in snow dominated basins.
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Table 1. Basin data for all of the study basins.

Mean Maximum Minimum Basin Area
Basin Elevation (m) Elevation (m) Elevation (m) (sq. km)

East River 3130 4079 2449 745
Roaring Fork 3437 4185 2441 276
Cross Creek 3362 4071 2443 95
Frying Pan 3293 4262 2559 345
Lake Fork 3290 4201 2428 961
Piney 2959 3883 2253 249
Avalanche
Creek

3084 4097 2134 431

Eagle 3271 3802 2697 188
Surface Creek 2832 3342 1910 115
Silver Jack
Reservoir

3366 4229 2699 157

Sanke River 3495 4234 2864 149
San Miguel 3020 4099 2196 806
Taylor River 3337 4032 2864 330
Uncompahgre 3079 4027 2133 358
Wolford
Mountain
Reservoir

2639 3301 2264 730
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Figure 2. Mean Absolute difference between each elevation band and the associated SNOTEL

stationFig. 2. Mean Absolute difference between each elevation band and the associated SNOTEL
station.
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Figure 3. Diagram of the ESP and ESP-DA algorithms. a) shows the uncertainty bounds of the 
data assimilation and forecast, b) shows the individual traces generated from each sampled Fig. 3. Diagram of the ESP and ESP-DA algorithms. (a) Shows the uncertainty bounds of the

data assimilation and forecast, (b) shows the individual traces generated from each sampled
initial condition obtained by data assimilation.
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Figure 4. Comparison of the total water stored (TWS) as snow produced by the spin-up (SU) and 
data assimilation (DA) for the four forecast dates.

Fig. 4. Comparison of the total water stored (TWS) as snow produced by the spin-up (SU) and
data assimilation (DA) for the four forecast dates.
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Figure 5. Cumulative daily volume plots. This figure shows the 95% predictive bounds of the
cumulative runoff volume from ESP (black lines) and ESP-DA (green lines). The expected value
of each is a dashed line and the cumulative observed runoff volume is the red line

Fig. 5. Cumulative daily volume plots. This figure shows the 95 % predictive bounds of the
cumulative runoff volume from ESP (black lines) and ESP-DA (green lines). The expected
value of each is a dashed line and the cumulative observed runoff volume is the red line.
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Figure 6. Similar to Figure 5 but for May 1st and Jun 1st forecasts
Fig. 6. Similar to Fig. 5 but for 1 May and 1 June forecasts.
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Figure 7. Total volume of runoff across the 15 basins in cubic meters for the three months
following the forecast date. The dashed line is the observed value.

Fig. 7. Total Volume of Runoff across the 15 basins in cubic meters for the three months
following the forecast date. The dashed line is the observed value.
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Figure 8. Rank histogram of the seasonal volume prediction across the 15 basins for March,
April and May forecasts dates during 2003, 2004, and 2005Fig. 8. Rank histogram of the seasonal volume prediction across the 15 basins for March, April

and May forecasts dates during 2003, 2004, and 2005.
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Figure 9. Q-Q plot for the seasonal volume prediction across the 15 basins for March, April and
May forecasts dates during 2003, 2004, and 2005Fig. 9. Q-Q plot for the seasonal volume prediction across the 15 basins for March, April and

May forecasts dates during 2003, 2004, and 2005.
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